This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZiyuGuan
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Existing multimodal sentiment analysis (MSA) methods have achieved significant success, leveraging cross-modal large-scale models (LLMs) and extensive pre-training data. However, these methods struggle to handle MSA tasks in low-resource languages. While multilingual LLMs enable cross-lingual transfer, they are limited to textual data and cannot address multimodal scenarios. To achieve MSA in low-resource languages, we propose a novel transfer learning framework named Language Family Disentanglement and Rethinking Transfer (LFD-RT). During pre-training, we establish cross-lingual and cross-modal alignments, followed by a language family disentanglement module that enhances the sharing of language universals within families while reducing noise from cross-family alignments. We propose a rethinking strategy for unsupervised fine-tuning that adapts the pre-trained model to MSA tasks in low-resource languages. Experimental results demonstrate the superiority of our method and its strong language-transfer capability on target low-resource languages. We commit to making our code and data publicly available, and the access link will be provided here.
Text style transfer (TST) aims to vary the style polarity of text while preserving the semantic content. Although recent advancements have demonstrated remarkable progress in short TST, it remains a relatively straightforward task with limited practical applications. The more comprehensive long TST task presents two challenges: (1) existing methods encounter difficulties in accurately evaluating content attributes in multiple words, leading to content degradation; (2) the conventional vanilla style classifier loss encounters obstacles in maintaining consistent style across multiple generated sentences.In this paper, we propose a novel method SC2, where a multilayer Joint Style-Content Weighed (JSCW) module and a Style Consistency loss are designed to address the two issues. The JSCW simultaneously assesses the amounts of style and content attributes within a token, aiming to acquire a lossless content representation and thereby enhancing content preservation. The multiple JSCW layers further progressively refine content representations. We design a style consistency loss to ensure the generated multiple sentences consistently reflect the target style polarity. Moreover, we incorporate a denoising non-autoregressive decoder to accelerate the training. We conduct plentiful experiments and the results show significant improvements of SC2 over competitive baselines. Our code: https://github.com/jiezhao6/SC2.
Legal question answering (LQA) aims to bridge the gap between the limited availability of legal professionals and the high demand for legal assistance. Traditional LQA approaches typically either select the optimal answers from an answer set or extract answers from law texts. However, they often struggle to provide relevant answers to complex, real-world questions due to the rigidity of predetermined answers. Although recent advancements in legal large language models have shown some potential in enhancing answer relevance, they fail to address the multiple user-specific circumstances, i.e., factual details in questions. To address these issues, we (1) construct the first publicly available legal community question-answering (LegalCQA) dataset; and (2) propose a Hierarchical Legal Knowledge Integration (H-LegalKI) framework. LegalCQA is collected from two widely used legal forums for developing user-centered LQA models. For H-LegalKI, we design a legal knowledge retriever that gathers comprehensive legal knowledge based on both entire questions and individual sentences. And an answer generation model is designed to understand question- and sentence-level factual details and integrate corresponding legal knowledge in a hierarchical way. Additionally, we design a de-redundancy module to remove redundant legal knowledge. Experiments on LegalCQA demonstrate the superiority of our framework over competitive baselines.
Given a question and a set of answer candidates, answer triggering determines whether the candidate set contains any correct answers. If yes, it then outputs a correct one. In contrast to existing pipeline methods which first consider individual candidate answers separately and then make a prediction based on a threshold, we propose an end-to-end deep neural network framework, which is trained by a novel group-level objective function that directly optimizes the answer triggering performance. Our objective function penalizes three potential types of error and allows training the framework in an end-to-end manner. Experimental results on the WikiQA benchmark show that our framework outperforms the state of the arts by a 6.6% absolute gain under F1 measure.