This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZixuanXia
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Prompts, especially high-quality ones, play an invaluable role in assisting large language models (LLMs) to accomplish various natural language processing tasks. However, carefully crafted prompts can also manipulate model behavior. Therefore, the security risks that “prompts themselves face” and those “arising from harmful prompts” cannot be overlooked and we define the Prompt Threat (PT) issues. In this paper, we review the latest attack methods related to prompt threats, focusing on prompt leakage attacks and prompt jailbreak attacks. Additionally, we summarize the experimental setups of these methods and explore the relationship between prompt threats and prompt injection attacks.
Language Models (LMs) acquire factual knowledge during pre-training and store it in the parameters, which can be valuable for downstream tasks. As world evolves, some facts may be incorrectly induced or become obsolete over time. Various model editing methods have been proposed to modify specific examples in LMs. However, existing training-based methods still suffer from sub-optimal locality, where irrelevant neighborhood examples can be adversely influenced. Model’s gradients are still struggling to identify the appropriate direction when updating the parameters. To address this issue, we find that directing the hidden state of the edit example towards spaces where semantics are sparse tends to help preserve the semantics of irrelevant neighborhood examples. Based on this hypothesis, we propose a novel metric, named SSS, to evaluate the degree of sparsity around a sentence embedding in the semantic space without any human or machine annotation. Subsequently, we incorporate SSS into the original loss function of the existing training-based methods to enhance locality. Experiments conducted on two datasets across various models demonstrate that SSS is effective in improving both locality and reasoning capability.
Recently, retrieval-based in-context learning (ICL) methods for selecting demonstrations have been widely investigated. Existing methods train a dense retriever to retrieve the most appropriate demonstrations for a given test query, which improves ICL performance. However, we find that distinct LLMs exhibit different biases for “what is a good demonstration” since they possess differences in training data, model architectures and training methods. As a result, a demonstration suitable for one LLM may not be appropriate for others.Previous approaches ignore the model bias and fail to retrieve the most appropriate demonstrations for different inference LLMs, resulting in a degradation of ICL performance.To address this problem, we propose a simple yet effective metric to evaluate the appropriateness of demonstrations for a specific inference LLM. Furthermore, we introduce a Model-specific Demonstration Retrieval (MDR) method for ICL at inference time, which considers the biases of different LLMs. We test MDR on seen and unseen tasks with multi-scale inference LLMs, such as GPT-Neo-2.7B, LLaMA-7B and Vicuna-13B. Experiments on 23 datasets across 11 data domains highlight the remarkable effectiveness of MDR, showcasing improvements of up to 41.2% in comparison to methods that neglect model biases.