Zixu Shen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
PromptSculptor: Multi-Agent Based Text-to-Image Prompt Optimization
Dawei Xiang | Wenyan Xu | Kexin Chu | Tianqi Ding | Zixu Shen | Yiming Zeng | Jianchang Su | Wei Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The rapid advancement of generative AI has democratized access to powerful tools such as Text-to-Image (T2I) models. However, to generate high-quality images, users must still craft detailed prompts specifying scene, style, and context—often through multiple rounds of refinement. We propose PromptSculptor, a novel multi-agent framework that automates this iterative prompt optimization process. Our system decomposes the task into four specialized agents that work collaboratively to transform a short, vague user prompt into a comprehensive, refined prompt. By leveraging Chain-of-Thought (CoT) reasoning, our framework effectively infers hidden context and enriches scene and background details. To iteratively refine the prompt, a self-evaluation agent aligns the modified prompt with the original input, while a feedback-tuning agent incorporates user feedback for further refinement. Experimental results demonstrate that PromptSculptor significantly enhances output quality and reduces the number of iterations needed for user satisfaction. Moreover, its model-agnostic design allows seamless integration with various T2I models, paving the way for industrial applications.