Ziqing Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
The ELCo Dataset: Bridging Emoji and Lexical Composition
Zi Yun Yang | Ziqing Zhang | Yisong Miao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Can emojis be composed to convey intricate meanings like English phrases? As a pioneering study, we present the Emoji-Lexical Composition (ELCo) dataset, a new resource that offers parallel annotations of emoji sequences corresponding to English phrases. Our dataset contains 1,655 instances, spanning 209 diverse concepts from tangible ones like “right man” (✔️👨) to abstract ones such as “full attention” (🧐✍️, illustrating a metaphoric composition of a focusing face and writing hand). ELCo enables the analysis of the patterns shared between emoji and lexical composition. Through a corpus study, we discovered that simple strategies like direct representation and reduplication are sufficient for conveying certain concepts, but a richer, metaphorical strategy is essential for expressing more abstract ideas. We further introduce an evaluative task, Emoji-based Textual Entailment (EmoTE), to assess the proficiency of NLP models in comprehending emoji compositions. Our findings reveals the challenge of understanding emoji composition in a zero-shot setting for current models, including ChatGPT. Our analysis indicates that the intricacy of metaphorical compositions contributes to this challenge. Encouragingly, models show marked improvement when fine-tuned on the ELCo dataset, with larger models excelling in deciphering nuanced metaphorical compositions.