Ziqin Rao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
A Simple Model for Distantly Supervised Relation Extraction
Ziqin Rao | Fangxiang Feng | Ruifan Li | Xiaojie Wang
Proceedings of the 29th International Conference on Computational Linguistics

Distantly supervised relation extraction is challenging due to the noise within data. Recent methods focus on exploiting bag representations based on deep neural networks with complex de-noising scheme to achieve remarkable performance. In this paper, we propose a simple but effective BERT-based Graph convolutional network Model (i.e., BGM). Our BGM comprises of an instance embedding module and a bag representation module. The instance embedding module uses a BERT-based pretrained language model to extract key information from each instance. The bag representaion module constructs the corresponding bag graph then apply a convolutional operation to obtain the bag representation. Our BGM model achieves a considerable improvement on two benchmark datasets, i.e., NYT10 and GDS.