Zhouzhou Shen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MadaKV: Adaptive Modality-Perception KV Cache Eviction for Efficient Multimodal Long-Context Inference
Kunxi Li | Zhonghua Jiang | Zhouzhou Shen | ZhaodeWang ZhaodeWang | Chengfei Lv | Shengyu Zhang | Fan Wu | Fei Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper introduces MadaKV, a modality-adaptive key-value (KV) cache eviction strategy designed to enhance the efficiency of multimodal large language models (MLLMs) in long-context inference. In multimodal scenarios, attention heads exhibit varying preferences for different modalities, resulting in significant disparities in modality importance across attention heads. Traditional KV cache eviction methods, which are tailored for unimodal settings, fail to capture modality-specific information, thereby yielding suboptimal performance. MadaKV addresses these challenges through two key components: modality preference adaptation and hierarchical compression compensation. By dynamically sensing modality information within attention heads and adaptively retaining critical tokens, MadaKV achieves substantial reductions in KV cache memory footprint and model inference decoding latency (1.3 to 1.5 times improvement) while maintaining high accuracy across various multimodal long-context tasks. Extensive experiments on representative MLLMs and the MileBench benchmark demonstrate the effectiveness of MadaKV compared to existing KV cache eviction methods.