Zhong-Yu Huang
Fixing paper assignments
- Please select all papers that belong to the same person.
- Indicate below which author they should be assigned to.
TODO: "submit" and "cancel" buttons here
2020
Explaining Word Embeddings via Disentangled Representation
Keng-Te Liao
|
Cheng-Syuan Lee
|
Zhong-Yu Huang
|
Shou-de Lin
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
Disentangled representations have attracted increasing attention recently. However, how to transfer the desired properties of disentanglement to word representations is unclear. In this work, we propose to transform typical dense word vectors into disentangled embeddings featuring improved interpretability via encoding polysemous semantics separately. We also found the modular structure of our disentangled word embeddings helps generate more efficient and effective features for natural language processing tasks.