Zhiwei Zhu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry
Qinwen Chen | Wenbiao Tao | Zhiwei Zhu | Mingfan Xi | Liangzhong Guo | Yuan Wang | Wei Wang | Yunshi Lan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Community Question Answering (CQA) platforms can be deemed as important knowledge bases in community, but effectively leveraging historical interactions and domain knowledge in real-time remains a challenge. Existing methods often underutilize external knowledge, fail to incorporate dynamic historical QA context, or lack memory mechanisms suited for industrial deployment. We propose ComRAG, a retrieval-augmented generation framework for real-time industrial CQA that integrates static knowledge with dynamic historical QA pairs via a centroid-based memory mechanism designed for retrieval, generation, and efficient storage. Evaluated on three industrial CQA datasets, ComRAG consistently outperforms all baselines—achieving up to 25.9% improvement in vector similarity, reducing latency by 8.7%–23.3%, and lowering chunk growth from 20.23% to 2.06% over iterations.