Zhitan Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Benchmarking Foundation Models with Retrieval-Augmented Generation in Olympic-Level Physics Problem Solving
Shunfeng Zheng | Yudi Zhang | Meng Fang | Zihan Zhang | Zhitan Wu | Mykola Pechenizkiy | Ling Chen
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-augmented generation (RAG) with foundation models has achieved strong performance across diverse tasks, but their capacity for expert-level reasoning—such as solving Olympiad-level physics problems—remains largely unexplored. Inspired by the way students prepare for competitions by reviewing past problems, we investigate the potential of RAG to enhance physics reasoning in foundation models. We introduce PhoPile, a high-quality multimodal dataset specifically designed for Olympiad-level physics, enabling systematic study of retrieval-based reasoning. PhoPile includes diagrams, graphs, and equations, capturing the inherently multimodal nature of physics problem solving. Using PhoPile, we benchmark RAG-augmented foundation models, covering both large language models (LLMs) and large multimodal models (LMMs) with multiple retrievers. Our results demonstrate that integrating retrieval with physics corpora can improve model performance, while also highlighting challenges that motivate further research in retrieval-augmented physics reasoning.