Zhiping Luo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
KGE-CL: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings
Zhiping Luo | Wentao Xu | Weiqing Liu | Jiang Bian | Jian Yin | Tie-Yan Liu
Proceedings of the 29th International Conference on Computational Linguistics

Learning the embeddings of knowledge graphs (KG) is vital in artificial intelligence, and can benefit various downstream applications, such as recommendation and question answering. In recent years, many research efforts have been proposed for knowledge graph embedding (KGE). However, most previous KGE methods ignore the semantic similarity between the related entities and entity-relation couples in different triples since they separately optimize each triple with the scoring function. To address this problem, we propose a simple yet efficient contrastive learning framework for tensor decomposition based (TDB) KGE, which can shorten the semantic distance of the related entities and entity-relation couples in different triples and thus improve the performance of KGE. We evaluate our proposed method on three standard KGE datasets: WN18RR, FB15k-237 and YAGO3-10. Our method can yield some new state-of-the-art results, achieving 51.2% MRR, 46.8% Hits@1 on the WN18RR dataset, 37.8% MRR, 28.6% Hits@1 on FB15k-237 dataset, and 59.1% MRR, 51.8% Hits@1 on the YAGO3-10 dataset.