Zhiping Cai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Guiding Abstractive Dialogue Summarization with Content Planning
Ye Wang | Xiaojun Wan | Zhiping Cai
Findings of the Association for Computational Linguistics: EMNLP 2022

Abstractive dialogue summarization has recently been receiving more attention. We propose a coarse-to-fine model for generating abstractive dialogue summaries, and introduce a fact-aware reinforcement learning (RL) objective that improves the fact consistency between the dialogue and the generated summary. Initially, the model generates the predicate-argument spans of the dialogue, and then generates the final summary through a fact-aware RL objective. Extensive experiments and analysis on two benchmark datasets demonstrate that our proposed method effectively improves the quality of the generated summary, especially in coherence and consistency.