Zhicheng Zhang

Other people with similar names: Zhicheng Zhang

Unverified author pages with similar names: Zhicheng Zhang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Cross-MoE: An Efficient Temporal Prediction Framework Integrating Textual Modality
Ruizheng Huang | Zhicheng Zhang | Yong Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

It has been demonstrated that incorporating external information as textual modality can effectively improve time series forecasting accuracy. However, current multi-modal models ignore the dynamic and different relations between time series patterns and textual features, which leads to poor performance in temporal-textual feature fusion. In this paper, we propose a lightweight and model-agnostic temporal-textual fusion framework named Cross-MoE. It replaces Cross Attention with Cross-Ranker to reduce computational complexity, and enhances modality-aware correlation memorization with Mixture-of-Experts (MoE) networks to tolerate the distributional shifts in time series. The experimental results demonstrate a 8.78% average reduction in Mean Squared Error (MSE) compared to the SOTA multi-modal time series framework. Notably, our method requires only 75% of computational overhead and 12.5% of activated parameters compared with Cross Attention mechanism. Our codes are available at https://github.com/Kilosigh/Cross-MoE.git