Zhenxiao Cheng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Learning Intrinsic Dimension via Information Bottleneck for Explainable Aspect-based Sentiment Analysis
Zhenxiao Cheng | Jie Zhou | Wen Wu | Qin Chen | Liang He
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Gradient-based explanation methods are increasingly used to interpret neural models in natural language processing (NLP) due to their high fidelity. Such methods determine word-level importance using dimension-level gradient values through a norm function, often presuming equal significance for all gradient dimensions. However, in the context of Aspect-based Sentiment Analysis (ABSA), our preliminary research suggests that only specific dimensions are pertinent. To address this, we propose the Information Bottleneck-based Gradient (IBG) explanation framework for ABSA. This framework leverages an information bottleneck to refine word embeddings into a concise intrinsic dimension, maintaining essential features and omitting unrelated information. Comprehensive tests show that our IBG approach considerably improves both the models’ performance and the explanations’ clarity by identifying sentiment-aware features.