Zhengzheng Xing


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Effective Proxy for Human Labeling: Ensemble Disagreement Scores in Large Language Models for Industrial NLP
Wei Du | Laksh Advani | Yashmeet Gambhir | Daniel Perry | Prashant Shiralkar | Zhengzheng Xing | Aaron Colak
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Large language models (LLMs) have demonstrated significant capability to generalize across a large number of NLP tasks. For industry applications, it is imperative to assess the performance of the LLM on unlabeled production data from time to time to validate for a real-world setting. Human labeling to assess model error requires considerable expense and time delay. Here we demonstrate that ensemble disagreement scores work well as a proxy for human labeling for language models in zero-shot, few-shot, and fine-tuned settings, per our evaluation on keyphrase extraction (KPE) task. We measure fidelity of the results by comparing to true error measured from human labeled ground truth. We contrast with the alternative of using another LLM as a source of machine labels, or ‘silver labels’. Results across various languages and domains show disagreement scores provide a better estimation of model performance with mean average error (MAE) as low as 0.4% and on average 13.8% better than using silver labels.