Zhengyong Liu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
AntContentTech at SemEval-2023 Task 6: Domain-adaptive Pretraining and Auxiliary-task Learning for Understanding Indian Legal Texts
Jingjing Huo | Kezun Zhang | Zhengyong Liu | Xuan Lin | Wenqiang Xu | Maozong Zheng | Zhaoguo Wang | Song Li
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The objective of this shared task is to gain an understanding of legal texts, and it is beset with difficulties such as the comprehension of lengthy noisy legal documents, domain specificity as well as the scarcity of annotated data. To address these challenges, we propose a system that employs a hierarchical model and integrates domain-adaptive pretraining, data augmentation, and auxiliary-task learning techniques. Moreover, to enhance generalization and robustness, we ensemble the models that utilize these diverse techniques. Our system ranked first on the RR sub-task and in the middle for the other two sub-tasks.