This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZhengxinZhang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Finetuning large language models (LLMs) has been empirically effective on a variety of downstream tasks. Existing approaches to finetuning an LLM either focus on parameter-efficient finetuning, which only updates a small number of trainable parameters, or attempt to reduce the memory footprint during the training phase of the finetuning. Typically, the memory footprint during finetuning stems from three contributors: model weights, optimizer states, and intermediate activations. However, existing works still require considerable memory, and none can simultaneously mitigate the memory footprint of all three sources. In this paper, we present quantized side tuing (QST), which enables memory-efficient and fast finetuning of LLMs by operating through a dual-stage process. First, QST quantizes an LLM’s model weights into 4-bit to reduce the memory footprint of the LLM’s original weights. Second, QST introduces a side network separated from the LLM, which utilizes the hidden states of the LLM to make task-specific predictions. Using a separate side network avoids performing back-propagation through the LLM, thus reducing the memory requirement of the intermediate activations. Finally, QST leverages several low-rank adaptors and gradient-free downsample modules to significantly reduce the trainable parameters, so as to save the memory footprint of the optimizer states. Experiments show that QST can reduce the total memory footprint by up to 2.3× and speed up the finetuning process by up to 3× while achieving competent performance compared with the state-of-the-art. When it comes to full finetuning, QST can reduce the total memory footprint up to 7×.
This paper describes our system that competed at SemEval 2019 Task 9 - SubTask A: ”Sug- gestion Mining from Online Reviews and Forums”. Our system fuses the convolutional neural network and the latest BERT model to conduct suggestion mining. In our system, the input of convolutional neural network is the embedding vectors which are drawn from the pre-trained BERT model. And to enhance the effectiveness of the whole system, the pre-trained BERT model is fine-tuned by provided datasets before the procedure of embedding vectors extraction. Empirical results show the effectiveness of our model which obtained 9th position out of 34 teams with F1 score equals to 0.715.
In this paper, we put forward a system that competed at SemEval-2018 Task 1: “Affect in Tweets”. Our system uses a simple yet effective ensemble method which combines several neural network components. We participate in two subtasks for English tweets: EI-reg and V-reg. For two subtasks, different combinations of neural components are examined. For EI-reg, our system achieves an accuracy of 0.727 in Pearson Correlation Coefficient (all instances) and an accuracy of 0.555 in Pearson Correlation Coefficient (0.5-1). For V-reg, the achieved accuracy scores are respectively 0.835 and 0.670