This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZhenghaoZhou
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present a hierarchy of natural language understanding abilities and argue for the importance of moving beyond assessments of understanding at the lexical and sentence levels to the discourse level. We propose the task of anaphora accessibility as a diagnostic for assessing discourse understanding, and to this end, present an evaluation dataset inspired by theoretical research in dynamic semantics. We evaluate human and LLM performance on our dataset and find that LLMs and humans align on some tasks and diverge on others. Such divergence can be explained by LLMs’ reliance on specific lexical items during language comprehension, in contrast to human sensitivity to structural abstractions.
Large language models (LLMs) have shown the emergent capability of in-context learning (ICL). One line of research has claimed that ICL is functionally equivalent to gradient descent, a type of error-driven learning mechanism. In this paper, we introduce a new way of diagnosing whether ICL is functionally performing error-driven learning. Our approach is based on the inverse frequency effect (IFE)—a phenomenon in which an agent’s behavior is influenced to a greater degree when presented with improbable examples as compared to more likely ones. The IFE has previously been identified in psycholinguistics where humans exhibit the IFE in the context of structural priming (the tendency for people to produce sentence structures they have encountered recently). In that context, the IFE has been used as evidence that human structural priming must involve error-driven learning mechanisms. In our experiments, we simulated structural priming with ICL and found that LLMs indeed display the IFE, with the effect being stronger in larger models. We conclude that at least in the case we studied, ICL is indeed a type of error-driven learning, supporting the hypothesis that an error signal is implicitly computed in the forward pass during ICL. Our results suggest that both humans and LLMs make use of error-driven processing mechanisms in on-line processing.