This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZhendongChu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Education materials for K-12 students often consist of multiple modalities, such as text and images, posing challenges for models to fully understand nuanced information in these materials. In this paper, we propose a unified language and vision assistant UniEDU designed for various educational applications, including knowledge recommendation, knowledge tracing, time cost prediction, and user answer prediction, all within a single model. Unlike conventional task-specific models, UniEDU offers a unified solution that excels across multiple educational tasks while maintaining strong generalization capabilities. Its adaptability makes it well-suited for real-world deployment in diverse learning environments. Furthermore, UniEDU is optimized for industry-scale deployment by significantly reducing computational overhead—achieving approximately a 300% increase in efficiency—while maintaining competitive performance with minimal degradation compared to fully fine-tuned models. This work represents a significant step toward creating versatile AI systems tailored to the evolving demands of education.
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
To achieve state-of-the-art performance, one still needs to train NER models on large-scale, high-quality annotated data, an asset that is both costly and time-intensive to accumulate. In contrast, real-world applications often resort to massive low-quality labeled data through non-expert annotators via crowdsourcing and external knowledge bases via distant supervision as a cost-effective alternative. However, these annotation methods result in noisy labels, which in turn lead to a notable decline in performance. Hence, we propose to denoise the noisy NER data with guidance from a small set of clean instances. Along with the main NER model we train a discriminator model and use its outputs to recalibrate the sample weights. The discriminator is capable of detecting both span and category errors with different discriminative prompts. Results on public crowdsourcing and distant supervision datasets show that the proposed method can consistently improve performance with a small guidance set.