Zhen Hu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
JuniperLiu at CoMeDi Shared Task: Models as Annotators in Lexical Semantics Disagreements
Zhu Liu | Zhen Hu | Ying Liu
Proceedings of Context and Meaning: Navigating Disagreements in NLP Annotation

We present the results of our system for the CoMeDi Shared Task, which predicts majority votes (Subtask 1) and annotator disagreements (Subtask 2). Our approach combines model ensemble strategies with MLP-based and threshold-based methods trained on pretrained language models. Treating individual models as virtual annotators, we simulate the annotation process by designing aggregation measures that incorporate continuous relatedness scores and discrete classification labels to capture both majority and disagreement. Additionally, we employ anisotropy removal techniques to enhance performance. Experimental results demonstrate the effectiveness of our methods, particularly for Subtask 2. Notably, we find that standard deviation on continuous relatedness scores among different model manipulations correlates with human disagreement annotations compared to metrics on aggregated discrete labels. The code will be published at https://github.com/RyanLiut/CoMeDi_Solution