This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZhaoxiangZhang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
User interface understanding with vision-language models (VLMs) has received much attention due to its potential for enhancing software automation.However, existing datasets used to build UI-VLMs either only contain large-scale context-free element annotations or contextualized functional descriptions for elements at a small scale.In this work, we propose the AutoGUI pipeline for automatically annotating UI elements with detailed functionality descriptions at scale.Specifically, we leverage large language models (LLMs) to infer element functionality by comparing UI state changes before and after simulated interactions. To improve annotation quality, we propose LLM-aided rejection and verification, eliminating invalid annotations without human labor.We construct a high-quality AutoGUI-704k dataset using the proposed pipeline, featuring diverse and detailed functionality annotations that are hardly provided by previous datasets.Human evaluation shows that we achieve annotation correctness comparable to a trained human annotator. Extensive experiments show that our dataset remarkably enhances VLM’s UI grounding capabilities and exhibits significant scaling effects. We also show the interesting potential use of our dataset in UI agent tasks. Please view our project at https://autogui-project.github.io/.
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multimodal understanding, but they frequently suffer from hallucination - generating content inconsistent with visual inputs. In this work, we explore a novel perspective on hallucination mitigation by examining the intermediate activations of LVLMs during generation. Our investigation reveals that hallucinated content manifests as distinct, identifiable patterns in the model’s hidden state space. Motivated by this finding, we propose Activation Steering Decoding (ASD), a training-free approach that mitigates hallucination through targeted intervention in the model’s intermediate activations. ASD operates by first identifying directional patterns of hallucination in the activation space using a small calibration set, then employing a contrast decoding mechanism that computes the difference between positive and negative steering predictions. This approach effectively suppresses hallucination patterns while preserving the model’s general capabilities. Extensive experiments demonstrate that our method significantly reduces hallucination across multiple benchmarks while maintaining performance on general visual understanding tasks. Notably, our approach requires no model re-training or architectural modifications, making it readily applicable to existing deployed models.
Repository-level code completion has drawn great attention in software engineering, and several benchmarks have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC-INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.
Recently, o1-like models have drawn significant attention, where these models produce the long Chain-of-Thought (CoT) reasoning steps to improve the reasoning abilities of existing Large Language Models (LLMs). In this paper, to understand the qualities of these long CoTs and measure the critique abilities of existing LLMs on these long CoTs, we introduce the DeltaBench including the generated long CoTs from different o1-like models (e.g., QwQ, DeepSeek-R1) for different reasoning tasks (e.g., Math, Code, General Reasoning), to measure the ability to detect errors in long COT reasoning. Based on DeltaBench, we first perform fine-grained analysis of the generated long CoTs to discover the effectiveness and efficiency of different o1-like models. Then, we conduct extensive evaluations of existing process reward models (PRMs) and critic models to detect the errors of each annotated process, which aims to investigate the boundaries and limitations of existing PRMs and critic models. Finally, we hope that DeltaBench could guide developers to better understand the long CoT reasoning abilities of their models.
Code LLMs have been widely used in various domains, including code generation, logical reasoning, and agent systems. However, open-access code LLMs mostly only release weights, lacking key features such as reproducible data pipelines and transparent training protocols, which are crucial for advancing deeper, more reliable investigations. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an “open cookbook” for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Our work identifies the key ingredients for building a top-tier code LLM: optimized heuristic rules for data cleaning and deduplication, effective recall of code-related text corpus, and high-quality synthetic data for both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research and enable reproducible advancements in code intelligence. The released resource is available at https://opencoder-llm.github.io.
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
Sequential recommenders predict users’ next interactions based on historical behavior and are essential in modern recommendation systems. While Large Language Models (LLMs) show promise, their size and high inference costs limit deployment on resource-constrained devices. Small Language Models (SLMs) provide a more efficient alternative for edge devices, but bridging the recommendation performance gap between LLMs and SLMs remains challenging. Typical approaches like supervised fine-tuning or vanilla knowledge distillation (KD) often lead to suboptimal performance or even negative transfer. Our motivational experiments reveal key issues with vanilla KD methods: feature imitation suffers from redundancy and uneven recommendation ability across layers, while prediction mimicking faces conflicts caused by differing weight distributions of prediction heads. To address these challenges, we propose a simple yet effective framework, C2KD, to transfer task-relevant knowledge from two complementary dimensions. Specifically, our method incorporates: (1) cross-layer feature imitation, which uses a dynamic router to select the most relevant teacher layers and assimilate task-relevant knowledge from the teacher’s late layers, allowing the student to concentrate on the teacher’s specialized knowledge; and (2) cross-head logit distillation, which maps the intermediate features of the student to the teacher’s output head, thereby minimizing prediction discrepancies between the teacher and the student. Extensive experiments across diverse model families demonstrate that our approach enables 1B-parameter SLMs to achieve competitive performance compared to LLMs (e.g., Llama3-8B), offering a practical solution for real-world on-device sequential recommendations.
The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).