This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZhanxinHao
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large language models (LLMs) have been applied across various intelligent educational tasks to assist teaching. While preliminary studies have focused on task-specific, independent LLM-empowered agents, the potential of LLMs within a multi-agent collaborative framework for classroom simulation with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation teaching framework. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Using the Flanders Interactive Analysis System and Community of Inquiry theoretical frameworks from educational analysis, we demonstrate that LLMs can simulate a dynamic learning environment for users with active teacher-student and student-student interactions. We also observe group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching. Our implementation and service can be found at https://github.com/THU-MAIC/SimClass.
Semi-structured interviews are a crucial method of data acquisition in qualitative research. Typically controlled by the interviewer, the process progresses through a question-and-answer format, aimed at eliciting information from the interviewee. However, interviews are highly time-consuming and demand considerable experience of the interviewers, which greatly limits the efficiency and feasibility of data collection. Therefore, we introduce LM-Interview, a novel system designed to automate the process of preparing, conducting and analyzing semi-structured interviews. Experimental results demonstrate that LM-interview achieves performance comparable to that of skilled human interviewers.