Zeyuan Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Rethinking Long Context Generation from the Continual Learning Perspective
Zeyuan Yang | Fangzhou Xiong | Peng Li | Yang Liu
Proceedings of the 31st International Conference on Computational Linguistics

Due to the limited context window, Large Language Models (LLMs) struggle with processing long contexts. Although fine-tuning can extend the context window, it incurs substantial computation costs. In contrast, recent tuning-free approaches reallocate the attention mechanism or incorporate temporary trainable parameters. In this work, by jointly modeling instance-level generation with a limited context window and learning over sequential data, we rethink the long context generation of LLMs from a continual learning perspective. In practice, we inspect existing representative approaches and analyze their synergy with continual learning strategies. Moreover, we integrate these strategies into current approaches to further boost LLMs’ efficiency in processing long contexts. Comprehensive experiments and analysis confirm the feasibility of continual learning insights for improving long-context processing.

2023

pdf bib
Failures Pave the Way: Enhancing Large Language Models through Tuning-free Rule Accumulation
Zeyuan Yang | Peng Li | Yang Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have showcased impressive performance. However, due to their inability to capture relationships among samples, these frozen LLMs inevitably keep repeating similar mistakes. In this work, we propose our Tuning-free Rule Accumulation (TRAN) framework, which guides LLMs in improving their performance by learning from previous mistakes. Considering data arrives sequentially, LLMs gradually accumulate rules from incorrect cases, forming a rule collection. These rules are then utilized by the LLMs to avoid making similar mistakes when processing subsequent inputs. Moreover, the rules remain independent of the primary prompts, seamlessly complementing prompt design strategies. Experimentally, we show that TRAN improves over recent baselines by a large margin.