Zeyu Liang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Scaling Under-Resourced TTS: A Data-Optimized Framework with Advanced Acoustic Modeling for Thai
Yizhong Geng | Jizhuo Xu | Zeyu Liang | Jinghan Yang | Xiaoyi Shi | Xiaoyu Shen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Text-to-speech (TTS) technology has achieved impressive results for widely spoken languages, yet many under-resourced languages remain challenged by limited data and linguistic complexities. In this paper, we present a novel methodology that integrates a data-optimized framework with an advanced acoustic model to build high-quality TTS systems for low-resource scenarios. We demonstrate the effectiveness of our approach using Thai as an illustrative case, where intricate phonetic rules and sparse resources are effectively addressed. Our method enables zero-shot voice cloning and improved performance across diverse client applications, ranging from finance to healthcare, education, and law. Extensive evaluations—both subjective and objective—confirm that our model meets state-of-the-art standards, offering a scalable solution for TTS production in data-limited settings, with significant implications for broader industry adoption and multilingual accessibility. All demos are available in https://luoji.cn/static/thai/demo.html.