Zechuan Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Training-Free Length Extrapolation Approach for LLMs: Greedy Attention Logit Interpolation
Yan Li | Tianyi Zhang | Zechuan Li | Caren Han
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Transformer-based Large Language Models (LLMs) struggle with inputs exceeding their training context window due to positional out-of-distribution (O.O.D.) issues that disrupt attention. Existing solutions, including fine-tuning and training-free methods, face challenges like inefficiency, redundant interpolation, logit outliers, or loss of local positional information. We propose Greedy Attention Logit Interpolation (GALI), a training-free method that improves length extrapolation by greedily reusing pretrained positional intervals and interpolating attention logits to eliminate outliers. GALI achieves stable and superior performance across a wide range of long-context tasks without requiring input-length-specific tuning. Our analysis further reveals that LLMs interpret positional intervals unevenly and that restricting interpolation to narrower ranges improves performance, even on short-context tasks. GALI represents a step toward more robust and generalizable long-text processing in LLMs.