Zachary Schultz


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Examining decoding items using engine transcriptions and scoring in early literacy assessment
Zachary Schultz | Mackenzie Young | Debbie Dugdale | Susan Lottridge
Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress

We investigate the reliability of two scoring approaches to early literacy decoding items, whereby students are shown a word and asked to say it aloud. Approaches were rubric scoring of speech, human or AI transcription with varying explicit scoring rules. Initial results suggest rubric-based approaches perform better than transcription-based methods.