Zachary Gottesman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Math Neurosurgery: Isolating Language Models’ Math Reasoning Abilities Using Only Forward Passes
Bryan R Christ | Zachary Gottesman | Jonathan Kropko | Thomas Hartvigsen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Math reasoning is an active area of Large Language Model (LLM) research because it is a hallmark of artificial intelligence and has implications in several domains, including math education. However, few works have explored how math reasoning is encoded within LLM parameters and if it is a skill that can be isolated within models. Doing so could allow targeted intervention to improve math performance without altering non-math behavior and foster understanding of how models encode math reasoning. We introduce Math Neurosurgery (MathNeuro), a computationally efficient method we use to isolate math-specific parameters in LLMs using only forward passes. MathNeuro builds on existing work by using weights and activations to calculate parameter importance, but isolates math-specific parameters by filtering out those important for general language tasks. Through pruning parameters MathNeuro identifies, we delete a LLM’s math reasoning ability without significantly impacting its general language ability. Scaling the identified parameters by a small constant improves a pretrained or instruction-tuned LLM’s performance by 4-17% on GSM8K and 5-35% on MATH while leaving non-math behavior unaltered. MathNeuro is also data efficient: most of its effectiveness holds when identifying math-specific parameters using a single sample. MathNeuro highlights the potential for future work to intervene on math-specific parameters.