Z h i - H o n g Lin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CYUT at SemEval-2025 Task 6: Prompting with Precision – ESG Analysis via Structured Prompts
Shih - Hung Wu | Z h i - H o n g Lin | Ping - Hsuan Lee
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

In response to the increasing need for efficientESG verification, we propose an innovativeNLP framework that automates the evaluationof corporate sustainability claims. Ourmethod integrates Retrieval-Augmented Generation,Chain-of-Thought reasoning, and structuredprompt engineering to effectively processand classify diverse, multilingual ESG disclosures.Evaluated under the SemEval-2025PromiseEval competition, our system achievedtop-tier performance—securing first place onthe public English leaderboard, excelling in theFrench track, and delivering marked improvementsover conventional machine learning approaches.These results highlight the framework’spotential to offer a scalable, transparent,and robust solution for corporate ESG assessment.