Z. Berkay Celik


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Implicit Values Embedded in How Humans and LLMs Complete Subjective Everyday Tasks
Arjun Arunasalam | Madison Pickering | Z. Berkay Celik | Blase Ur
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) can underpin AI assistants that help users with everyday tasks, such as by making recommendations or performing basic computation. Despite AI assistants’ promise, little is known about the implicit values these assistants display while completing subjective everyday tasks. Humans may consider values like environmentalism, charity, and diversity. To what extent do LLMs exhibit these values in completing everyday tasks? How do they compare with humans? We answer these questions by auditing how six popular LLMs complete 30 everyday tasks, comparing LLMs to each other and to 100 human crowdworkers from the US. We find LLMs often do not align with humans, nor with other LLMs, in the implicit values exhibited.