Yuyao Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Survey of RAG-Reasoning Systems in Large Language Models
Yangning Li | Weizhi Zhang | Yuyao Yang | Wei-Chieh Huang | Yaozu Wu | Junyu Luo | Yuanchen Bei | Henry Peng Zou | Xiao Luo | Yusheng Zhao | Chunkit Chan | Yankai Chen | Zhongfen Deng | Yinghui Li | Hai-Tao Zheng | Dongyuan Li | Renhe Jiang | Ming Zhang | Yangqiu Song | Philip S. Yu
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-search perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and thought to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric.