Yuxuan Zhao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Backtesting Sentiment Signals for Trading: Evaluating the Viability of Alpha Generation from Sentiment Analysis
Elvys Linhares Pontes | Carlos-Emiliano González-Gallardo | Georgeta Bordea | Jose G Moreno | Mohamed Ben Jannet | Yuxuan Zhao | Antoine Doucet
Actes de la session industrielle de CORIA-TALN 2025

Sentiment analysis, widely used in product reviews, also impacts financial markets by influencing asset prices through microblogs and news articles. Despite research in sentiment-driven finance, many studies focus on sentence-level classification, overlooking its practical application in trading. This study bridges that gap by evaluating sentiment-based trading strategies for generating positive alpha. We conduct a backtesting analysis using sentiment predictions from three models (two classification and one regression) applied to news articles on Dow Jones 30 stocks, comparing them to the benchmark Buy&Hold strategy. Results show all models produced positive returns, with the regression model achieving the highest return of 50.63% over 28 months, outperforming the benchmark Buy&Hold strategy. This highlights the potential of sentiment in enhancing investment strategies and financial decision-making.