Yuxing Chen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Harnessing the linguistic signal to predict scalar inferences
Sebastian Schuster | Yuxing Chen | Judith Degen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pragmatic inferences often subtly depend on the presence or absence of linguistic features. For example, the presence of a partitive construction (of the) increases the strength of a so-called scalar inference: listeners perceive the inference that Chris did not eat all of the cookies to be stronger after hearing “Chris ate some of the cookies” than after hearing the same utterance without a partitive, “Chris ate some cookies”. In this work, we explore to what extent neural network sentence encoders can learn to predict the strength of scalar inferences. We first show that an LSTM-based sentence encoder trained on an English dataset of human inference strength ratings is able to predict ratings with high accuracy (r = 0.78). We then probe the model’s behavior using manually constructed minimal sentence pairs and corpus data. We first that the model inferred previously established associations between linguistic features and inference strength, suggesting that the model learns to use linguistic features to predict pragmatic inferences.

pdf bib
DialectGram: Automatic Detection of Dialectal Changes with Multi-geographic Resolution Analysis
Hang Jiang | Haoshen Hong | Yuxing Chen | Vivek Kulkarni
Proceedings of the Society for Computation in Linguistics 2020