Yuxi Zheng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Incorporating Lexicon-Aligned Prompting in Large Language Model for Tangut–Chinese Translation
Yuxi Zheng | Jingsong Yu
Proceedings of the Second Workshop on Ancient Language Processing

This paper proposes a machine translation approach for Tangut–Chinese using a large language model (LLM) enhanced with lexical knowledge. We fine-tune a Qwen-based LLM using Tangut–Chinese parallel corpora and dictionary definitions. Experimental results demonstrate that incorporating single-character dictionary definitions leads to the best BLEU-4 score of 72.33 for literal translation. Additionally, applying a chain-of-thought prompting strategy significantly boosts free translation performance to 64.20. The model also exhibits strong few-shot learning abilities, with performance improving as the training dataset size increases. Our approach effectively translates both simple and complex Tangut sentences, offering a robust solution for low-resource language translation and contributing to the digital preservation of Tangut texts.