Yuuki Sekizawa


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Improving Japanese-to-English Neural Machine Translation by Paraphrasing the Target Language
Yuuki Sekizawa | Tomoyuki Kajiwara | Mamoru Komachi
Proceedings of the 4th Workshop on Asian Translation (WAT2017)

Neural machine translation (NMT) produces sentences that are more fluent than those produced by statistical machine translation (SMT). However, NMT has a very high computational cost because of the high dimensionality of the output layer. Generally, NMT restricts the size of vocabulary, which results in infrequent words being treated as out-of-vocabulary (OOV) and degrades the performance of the translation. In evaluation, we achieved a statistically significant BLEU score improvement of 0.55-0.77 over the baselines including the state-of-the-art method.