Yutaro Sigrist


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Pipeline to Assess Merging Methods via Behavior and Internals
Yutaro Sigrist | Andreas Waldis
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Merging methods combine the weights of multiple language models (LMs) to leverage their capacities, such as for domain adaptation. While existing studies investigate merged models from a solely behavioral perspective, we offer the first comprehensive view by assessing and connecting their behavior and internals. We present a novel evaluation pipeline that first merges multiple parent LMs, and then evaluates the merged models in comparison to the initial ones based on their behavior on downstream tasks, like MMLU, and the internal encoded linguistic competence.We showcase this pipeline by assessing the merging of instruction fine-tuned with math- and code-adapted LMs from the Qwen2.5 family. Our results show that merging methods impacts behavior and internals differently. While the performance of merged models is typically between that of the two parent models, their encoded information about linguistic phenomena – particularly in morphology and syntax – can surpass the parent models.Moreover, we find weak ranking correlation between this behavior and internal evaluation. With our pipeline and initial results, we emphasize the need for more comprehensive evaluations of model merging methods to gain a faithful understanding of their capabilities and reliability, beyond potential superficial behavioral advances.