Yuru Bao


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Integrating Structural Semantic Knowledge for Enhanced Information Extraction Pre-training
Xiaoyang Yi | Yuru Bao | Jian Zhang | Yifang Qin | Faxin Lin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Information Extraction (IE), aiming to extract structured information from unstructured natural language texts, can significantly benefit from pre-trained language models. However, existing pre-training methods solely focus on exploiting the textual knowledge, relying extensively on annotated large-scale datasets, which is labor-intensive and thus limits the scalability and versatility of the resulting models. To address these issues, we propose SKIE, a novel pre-training framework tailored for IE that integrates structural semantic knowledge via contrastive learning, effectively alleviating the annotation burden. Specifically, SKIE utilizes Abstract Meaning Representation (AMR) as a low-cost supervision source to boost model performance without human intervention. By enhancing the topology of AMR graphs, SKIE derives high-quality cohesive subgraphs as additional training samples, providing diverse multi-level structural semantic knowledge. Furthermore, SKIE refines the graph encoder to better capture cohesive information and edge relation information, thereby improving the pre-training efficacy. Extensive experimental results demonstrate that SKIE outperforms state-of-the-art baselines across multiple IE tasks and showcases exceptional performance in few-shot and zero-shot settings.