Yuri Balashov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Translation Analytics for Freelancers: I. Introduction, Data Preparation, Baseline Evaluations
Yuri Balashov | Alex Balashov | Shiho Fukuda Koski
Proceedings of Machine Translation Summit XX: Volume 1

This is the first in a series of papers exploring the rapidly expanding new opportunities arising from recent progress in language technologies for individual translators and language service providers with modest resources. The advent of advanced neural machine translation systems, large language models, and their integration into workflows via computer-assisted translation tools and translation management systems have reshaped the translation landscape. These advancements enable not only translation but also quality evaluation, error spotting, glossary generation, and adaptation to domain-specific needs, creating new technical opportunities for freelancers. In this series, we aim to empower translators with actionable methods to harness these advancements. Our approach emphasizes Translation Analytics, a suite of evaluation techniques traditionally reserved for large-scale industry applications but now becoming increasingly available for smaller-scale users. This first paper introduces a practical framework for adapting automatic evaluation metrics — such as BLEU, chrF, TER, and COMET — to freelancers’ needs. We illustrate the potential of these metrics using a trilingual corpus derived from a real-world project in the medical domain and provide statistical analysis correlating human evaluations with automatic scores. Our findings emphasize the importance of proactive engagement with emerging technologies to not only adapt but thrive in the evolving professional environment.