Yuqian Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Survey of Uncertainty Estimation Methods on Large Language Models
Zhiqiu Xia | Jinxuan Xu | Yuqian Zhang | Hang Liu
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, these models could offer biased, hallucinated, or non-factual responses camouflaged by their fluency and realistic appearance. Uncertainty estimation is the key method to address this challenge. While research efforts in uncertainty estimation are ramping up, there is a lack of comprehensive and dedicated surveys on LLM uncertainty estimation. This survey presents four major avenues of LLM uncertainty estimation. Furthermore, we perform extensive experimental evaluations across multiple methods and datasets. At last, we provide critical and promising future directions for LLM uncertainty estimation.