YuQian Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ChatSOP: An SOP-Guided MCTS Planning Framework for Controllable LLM Dialogue Agents
Zhigen Li | Jianxiang Peng | Yanmeng Wang | Yong Cao | Tianhao Shen | Minghui Zhang | Linxi Su | Shang Wu | Yihang Wu | YuQian Wang | Ye Wang | Wei Hu | Jianfeng Li | Shaojun Wang | Jing Xiao | Deyi Xiong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialogue agents powered by Large Language Models (LLMs) show superior performance in various tasks. Despite the better user understanding and human-like responses, their **lack of controllability** remains a key challenge, often leading to unfocused conversations or task failure. To address this, we introduce Standard Operating Procedure (SOP) to regulate dialogue flow. Specifically, we propose **ChatSOP**, a novel SOP-guided Monte Carlo Tree Search (MCTS) planning framework designed to enhance the controllability of LLM-driven dialogue agents. To enable this, we curate a dataset comprising SOP-annotated multi-scenario dialogues, generated using a semi-automated role-playing system with GPT-4o and validated through strict manual quality control. Additionally, we propose a novel method that integrates Chain of Thought reasoning with supervised fine-tuning for SOP prediction and utilizes SOP-guided Monte Carlo Tree Search for optimal action planning during dialogues. Experimental results demonstrate the effectiveness of our method, such as achieving a 27.95% improvement in action accuracy compared to baseline models based on GPT-3.5 and also showing notable gains for open-source models. Dataset and codes are publicly available.