Yuqi Sun


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Constructing High Quality Sense-specific Corpus and Word Embedding via Unsupervised Elimination of Pseudo Multi-sense
Haoyue Shi | Xihao Wang | Yuqi Sun | Junfeng Hu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Implicit Subjective and Sentimental Usages in Multi-sense Word Embeddings
Yuqi Sun | Haoyue Shi | Junfeng Hu
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In multi-sense word embeddings, contextual variations in corpus may cause a univocal word to be embedded into different sense vectors. Shi et al. (2016) show that this kind of pseudo multi-senses can be eliminated by linear transformations. In this paper, we show that pseudo multi-senses may come from a uniform and meaningful phenomenon such as subjective and sentimental usage, though they are seemingly redundant. In this paper, we present an unsupervised algorithm to find a linear transformation which can minimize the transformed distance of a group of sense pairs. The major shrinking direction of this transformation is found to be related with subjective shift. Therefore, we can not only eliminate pseudo multi-senses in multisense embeddings, but also identify these subjective senses and tag the subjective and sentimental usage of words in the corpus automatically.