Yunzhe Qi


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Learning to Instruct: Fine-Tuning a Task-Aware Instruction Optimizer for Black-Box LLMs
Yunzhe Qi | Jinjin Tian | Tianci Liu | Ruirui Li | Tianxin Wei | Hui Liu | Xianfeng Tang | Monica Xiao Cheng | Jingrui He
Findings of the Association for Computational Linguistics: EMNLP 2025

The performance of Large Language Models (LLMs) critically depends on designing effective instructions, which is particularly challenging for black-box LLMs with inaccessible internal states. To this end, we introduce Learning to Instruct, a novel paradigm that formulates instruction optimization as an LLM fine-tuning objective for a white-box “instruction engineer” LLM, leveraging its rich learning capacity and vast pre-trained knowledge to enable efficient and effective instruction optimization. Within this paradigm, we propose Automatic Instruction Optimizer (AIO), a novel framework that fine-tunes a white-box LLM into a capable instruction engineer. AIO learns to optimize task-aware, human-comprehensible instructions by incorporating task nuances and feedback from the task-solving black-box LLM. To overcome the challenges of inaccessible black-box gradients and high API costs, AIO introduces a novel zeroth-order (ZO) gradient approximation mechanism guided by Thompson Sampling (TS), which reuses informative black-box LLM feedback for improved query efficiency. Extensive experiments show that AIO generally outperforms strong baselines in both effectiveness and efficiency, establishing Learning to Instruct as a promising new direction for black-box LLM instruction optimization.