Yunwon Tae


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
PePe: Personalized Post-editing Model utilizing User-generated Post-edits
Jihyeon Lee | Taehee Kim | Yunwon Tae | Cheonbok Park | Jaegul Choo
Findings of the Association for Computational Linguistics: EACL 2023

Incorporating personal preference is crucial in advanced machine translation tasks. Despite the recent advancement of machine translation, it remains a demanding task to properly reflect personal style. In this paper, we introduce a personalized automatic post-editing framework to address this challenge, which effectively generates sentences considering distinct personal behaviors. To build this framework, we first collect post-editing data that connotes the user preference from a live machine translation system. Specifically, real-world users enter source sentences for translation and edit the machine-translated outputs according to the user’s preferred style. We then propose a model that combines a discriminator module and user-specific parameters on the APE framework. Experimental results show that the proposed method outperforms other baseline models on four different metrics (i.e., BLEU, TER, YiSi-1, and human evaluation).

2021

pdf bib
Unsupervised Neural Machine Translation for Low-Resource Domains via Meta-Learning
Cheonbok Park | Yunwon Tae | TaeHee Kim | Soyoung Yang | Mohammad Azam Khan | Lucy Park | Jaegul Choo
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a novel meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains, to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-3 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baselines.