Yumeng Shi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Static or Dynamic: Towards Query-Adaptive Token Selection for Video Question Answering
Yumeng Shi | Quanyu Long | Wenya Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Video question answering benefits from the rich information in videos, enabling various applications. However, the large volume of tokens generated from long videos presents challenges to memory efficiency and model performance. To alleviate this, existing works propose to compress video inputs, but often overlook the varying importance of static and dynamic information across different queries, leading to inefficient token usage within limited budgets. We propose a novel token selection strategy, explore-then-select, that adaptively adjusts static and dynamic information based on question requirements. Our framework first explores different token allocations between key frames, which preserve spatial details, and delta frames, which capture temporal changes. Then it employs a query-aware attention-based metric to select the optimal token combination without model updates. Our framework is plug-and-play and can be seamlessly integrated within diverse video language models. Extensive experiments show that our method achieves significant performance improvements (up to 5.8%) on multiple video question answering benchmarks. Our code is available at *https://github.com/ANDgate99/Explore-Then-Select*.