This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YulinYuan
Also published as:
毓林 袁
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The remarkable ability of large language models (LLMs) to comprehend, interpret, and generate complex language has rapidly integrated LLM-generated text into various aspects of daily life, where users increasingly accept it. However, the growing reliance on LLMs underscores the urgent need for effective detection mechanisms to identify LLM-generated text. Such mechanisms are critical to mitigating misuse and safeguarding domains like artistic expression and social networks from potential negative consequences. LLM-generated text detection, conceptualized as a binary classification task, seeks to determine whether an LLM produced a given text. Recent advances in this field stem from innovations in watermarking techniques, statistics-based detectors, and neural-based detectors. Human-assisted methods also play a crucial role. In this survey, we consolidate recent research breakthroughs in this field, emphasizing the urgent need to strengthen detector research. Additionally, we review existing datasets, highlighting their limitations and developmental requirements. Furthermore, we examine various LLM-generated text detection paradigms, shedding light on challenges like out-of-distribution problems, potential attacks, real-world data issues, and ineffective evaluation frameworks. Finally, we outline intriguing directions for future research in LLM-generated text detection to advance responsible artificial intelligence. This survey aims to provide a clear and comprehensive introduction for newcomers while offering seasoned researchers valuable updates in the field.1
With the different roles that AI is expected to play in human life, imbuing large language models (LLMs) with different personalities has attracted increasing research interest. While the “personification” enhances human experiences of interactivity and adaptability of LLMs, it gives rise to critical concerns about content safety, particularly regarding bias, sentiment, and toxicity of LLM generation. This study explores how assigning different personality traits to LLMs affects the toxicity and biases of their outputs. Leveraging the widely accepted HEXACO personality framework developed in social psychology, we design experimentally sound prompts to test three LLMs’ performance on three toxic and bias benchmarks. The findings demonstrate the sensitivity of all three models to HEXACO personality traits and, more importantly, a consistent variation in the biases, negative sentiment, and toxicity of their output. In particular, adjusting the levels of several personality traits can effectively reduce bias and toxicity in model performance, similar to humans’ correlations between personality traits and toxic behaviors. The findings highlight the additional need to examine content safety besides the efficiency of training or fine-tuning methods for LLM personification, they also suggest a potential for the adjustment of personalities to be a simple and low-cost method to conduct controlled text generation.
Translating literary works has perennially stood as an elusive dream in machine translation (MT), a journey steeped in intricate challenges. To foster progress in this domain, we hold a new shared task at WMT 2023, the second edition of the Discourse-Level Literary Translation. First, we (Tencent AI Lab and China Literature Ltd.) release a copyrighted and document-level Chinese-English web novel corpus. Furthermore, we put forth an industry-endorsed criteria to guide human evaluation process. This year, we totally received 10 submissions from 5 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. In addition, our extensive analysis reveals a series of interesting findings on literary and discourse-aware MT. We release data, system outputs, and leaderboard at https://www2.statmt.org/wmt24/literary-translation-task.html.
Translating literary works has perennially stood as an elusive dream in machine translation (MT), a journey steeped in intricate challenges. To foster progress in this domain, we hold a new shared task at WMT 2023, the first edition of the Discourse-Level Literary Translation. First, we (Tencent AI Lab and China Literature Ltd.) release a copyrighted and document-level Chinese-English web novel corpus. Furthermore, we put forth an industry-endorsed criteria to guide human evaluation process. This year, we totally received 14 submissions from 7 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. In addition, our extensive analysis reveals a series of interesting findings on literary and discourse-aware MT. We release data, system outputs, and leaderboard at http://www2.statmt.org/wmt23/literary-translation-task.html.