Yulei Tang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CYCLE-INSTRUCT: Fully Seed-Free Instruction Tuning via Dual Self-Training and Cycle Consistency
Zhanming Shen | Hao Chen | Yulei Tang | Shaolin Zhu | Wentao Ye | Xiaomeng Hu | Haobo Wang | Gang Chen | Junbo Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Instruction tuning is vital for aligning large language models (LLMs) with human intent, but current methods typically rely on costly human-annotated seed data or powerful external teacher models. While instruction back-translation techniques reduce this dependency, they remain fundamentally tethered to an initial seed set, which limits full automation, introduces biases, and can lead to inefficient use of unlabeled corpora. In this paper, we propose Cycle-Instruct, a novel framework that achieves fully seed-free instruction tuning. Inspired by cycle consistency, Cycle-Instruct employs a dual self-training loop where two models—an answer generator and a question generator—are bootstrapped solely from raw, unlabeled text. These models mutually supervise each other by reconstructing original text segments from their counterpart’s generated pseudo-labels, effectively learning from the intrinsic structure of the data without any human-provided seeds. We demonstrate Cycle-Instruct’s efficacy across four diverse data tracks, including general instruction-following, domain-specific tasks, dialogue logs, and plain text. Our extensive experiments show that Cycle-Instruct not only outperforms seed-driven back-translation baselines but also achieves performance comparable to strongly supervised methods.