Yuki Momii


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
RAG-Fusion Based Information Retrieval for Fact-Checking
Yuki Momii | Tetsuya Takiguchi | Yasuo Ariki
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)

Fact-checking involves searching for relevant evidence and determining whether the given claim contains any misinformation. In this paper, we propose a fact verification system based on RAG-Fusion. We use GPT-4o to generate questions from the claim, which helps improve the accuracy of evidence retrieval.Additionally, we adopt GPT-4o for the final judgment module and refine the prompts to enhance the detection accuracy, particularly when the claim contains misinformation. Experiment showed that our system achieved an AVeriTeC Score of 0.3865 on the AVeriTeC test data, significantly surpassing the baseline score of 0.11.