Yuki Chida


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Medical Visual Textual Entailment for Numerical Understanding of Vision-and-Language Models
Hitomi Yanaka | Yuta Nakamura | Yuki Chida | Tomoya Kurosawa
Proceedings of the 5th Clinical Natural Language Processing Workshop

Assessing the capacity of numerical understanding of vision-and-language models over images and texts is crucial for real vision-and-language applications, such as systems for automated medical image analysis. We provide a visual reasoning dataset focusing on numerical understanding in the medical domain. The experiments using our dataset show that current vision-and-language models fail to perform numerical inference in the medical domain. However, the data augmentation with only a small amount of our dataset improves the model performance, while maintaining the performance in the general domain.