Yukai Xu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DivTOD: Unleashing the Power of LLMs for Diversifying Task-Oriented Dialogue Representations
Weihao Zeng | Dayuan Fu | Keqing He | Yejie Wang | Yukai Xu | Weiran Xu
Findings of the Association for Computational Linguistics: NAACL 2024

Language models pre-trained on general text have achieved impressive results in diverse fields. Yet, the distinct linguistic characteristics of task-oriented dialogues (TOD) compared to general text limit the practical utility of existing language models. Current task-oriented dialogue pre-training methods overlook the one-to-many property of conversations, where multiple responses can be appropriate given the same conversation context.In this paper, we propose a novel dialogue pre-training model called DivTOD, which collaborates with LLMs to learn diverse task-oriented dialogue representations. DivTOD guides LLMs in transferring diverse knowledge to smaller models while removing domain knowledge that contradicts task-oriented dialogues. Experiments show that our model outperforms strong TOD baselines on various downstream dialogue tasks and learns the intrinsic diversity of task-oriented dialogues.