Yujun Mao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs’ Mathematical Reasoning Capabilities
Yujun Mao | Yoon Kim | Yilun Zhou
Findings of the Association for Computational Linguistics: ACL 2024

Recent large language models (LLMs) have shown indications of mathematical reasoning ability on challenging competition-level problems, especially with self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting). However, current evaluations mainly focus on the end-to-end final answer correctness, and it is unclear whether LLMs can make use of helpful side information such as problem-specific hints. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. Furthermore, we annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle.