Yuheng Wu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic
Yuheng Wu | Jianwen Xie | Denghui Zhang | Zhaozhuo Xu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Theory-of-Mind (ToM) tasks pose a unique challenge for large language models (LLMs), which often lack the capability for dynamic logical reasoning. In this work, we propose DEL-ToM, a framework that improves verifiable ToM reasoning through inference-time scaling rather than architectural changes. Our approach decomposes ToM tasks into a sequence of belief updates grounded in Dynamic Epistemic Logic (DEL), enabling structured and verifiable dynamic logical reasoning. We use data generated automatically via a DEL simulator to train a verifier, which we call the Process Belief Model (PBM), to score each belief update step. During inference, the PBM evaluates candidate belief traces from the LLM and selects the highest-scoring one. This allows LLMs to allocate extra inference-time compute to yield more transparent reasoning. Experiments across model scales and benchmarks show that DEL-ToM consistently improves performance, demonstrating that verifiable belief supervision significantly enhances LLMs’ ToM capabilities without retraining. Code is available at https://github.com/joel-wu/DEL-ToM.

pdf bib
SATBench: Benchmarking LLMs’ Logical Reasoning via Automated Puzzle Generation from SAT Formulas
Anjiang Wei | Yuheng Wu | Yingjia Wan | Tarun Suresh | Huanmi Tan | Zhanke Zhou | Sanmi Koyejo | Ke Wang | Alex Aiken
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems.Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a puzzle using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-based and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. Our error analysis reveals systematic failures such as satisfiability bias, context inconsistency, and condition omission, highlighting limitations of current LLMs in search-based logical reasoning. Our code and data are publicly available at https://github.com/Anjiang-Wei/SATBench