Yuhao Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
SentiStream: A Co-Training Framework for Adaptive Online Sentiment Analysis in Evolving Data Streams
Yuhao Wu | Karthick Sharma | Chun Seah | Shuhao Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Online sentiment analysis has emerged as a crucial component in numerous data-driven applications, including social media monitoring, customer feedback analysis, and online reputation management. Despite their importance, current methodologies falter in effectively managing the continuously evolving nature of data streams, largely due to their reliance on substantial, pre-existing labelled datasets. This paper presents sentistream, a novel co-training framework specifically designed for efficient sentiment analysis within dynamic data streams. Comprising unsupervised, semi-supervised, and stream merge modules, sentistream guarantees constant adaptability to evolving data landscapes. This research delves into the continuous adaptation of language models for online sentiment analysis, focusing on real-world applications. Experimental evaluations using data streams derived from three benchmark sentiment analysis datasets confirm that our proposed methodology surpasses existing approaches in terms of both accuracy and computational efficiency.